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RESPECT TO CENTER-OF-GRAVITY ACCELERATIONS

By Harry C. Mickleboro, Richard B. Fahrer,
and C. C. Shufflebarger

SUMMARY

In continuation of flight studies of transient wing response initi-
ated on a two-engine transport airplane, a flight investigation was
undertaken on a four-engine bomber airplane to determine the effect of
transient wing response in rough air upon acceleration measurements at
the center of gravity of the alrplane. Flights were made in clear-air
turbulence for two speed and two weight conditions. Simultaneocus accel-
eration measurements were taken at the center of gravity and at several
stations along the wing span from which the true alrplane acceleration
was determined. ’

An analysis of the results indicated that the recorded center-of-
gravity acceleration increments were, on the average, equal to the true
airplane acceleration increment amplified by a factor of approximately
1.28 and further increased by approximately 0.0lg. Within the accuracy
of the results, there were no important changes in this relationship
that could be attributed to variations in speed and weight.

INTRODUCTION

In the flight operation of transport and bomber airplanes, atmos-
pheric gusts constitute a principal source of loads. Knowledge of these
loads is based primarily on V-G type of records and other acceleration
measurenents taken in the fuselage near the center of gravity of the
airplane and interpreted on the basis that the airplane acts as a rigid
body.  For some of the newer and larger airplanes, interpretation of
acceleration measurements on a rigid body basis may lead to errors
attributable to the effect of transient wing response in gusts. The
results of a flight investigation made on a two-engine transport air-
plane in rough air (ref. 1) have shown that, for the case investigated,
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the use of fuselage accelerations in evaluating gust measurements can
lead to errors, averaging about 20 percent.

Two principal effects of transient wing response on center-of-
gravity acceleration measurements exist. One is a vibratory effect due
to the excitation by the gusts of the natural modes of vibration of the
airplane which causes the acceleration measured at the center of gravity
to differ from the true airplane acceleration. The other is an aero-
dynamic effect due to the fact that the transient response causes a
change in the total aercdynamic load that acts on the airplane. When
vibratory response of the wing is important, therefore, center-of-gravity
acceleration measurements may not be adequate for gust studies.

In order to establish the magnitude of transient-response effects
on an airplane of a different configuration than that reported in .
reference 1 and to provide data suitable for comparison with transient-
response calculations being made, a flight investigation was undertaken
on a four-engine bomber airplane at Langley Field, Va. Acceleration,
strain, and wing-twist measurements were made at a number of spanwise
stations during flights through clear-air turbulence for two speeds and
two weight conditions. The primary purpcse of the present paper was to
investigate the effects of wing vibration on center-of-gravity acceler-
.ation measurements. In addition, an estimate was made of the change in
total aerodynamic load associated with transient response, and possible
methods of evaluating or obtaining acceleration data free of vibratory
effects were considered.

APPARATUS AND TESTS

The characteristics of the test alrplane are given in table I and
a three-view line drawing is given in figure 1. The estimated spanwise
stiffness distribution, using EI as a measure of local wing stiffness,
is shown in figure 2. The estimated spanwise weight distribution
exclusive of fuel is shown in figure 3(a). The limits of the fuel load
distributions of all runs are shown in figures 3(b) and 3(c) for the
wing-heavy and wing-light fuel conditions, respectively.

The primary instrumentation for the investigation reported herein
congisted of an NACA recording accelerometer mounted near the center of
gravity and several remote recording electrical accelerometer units
mounted at a number of stations along the wing span. The locations,
types, and natural frequencies of all accelerometers used are given in
figure 4. The electrical accelerometer units were located as close as
feasible to the elastic axis of the wing as determined from the
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manufacturer's ground-vibration tests. The accelerometer units at
station 278 were located as close as practicable to the nodal points of
the fundamental bending mode of the wing on the basis of ground-vibration
tests. Dual instrumentation was used at station 278 on both left and
right wings so that separate and electrically combined recordings of
left- and right-wing nodal accelerations could be made. (The combined
recording gives an average value of acceleration from the left- and
right-wing nodal points and should exclude effects of antisymmetrical
motion.) NACA attitude recorders were located at the stations shown in
figure 4 in order to obtain a measure of the twist of the wing with
reference to the fuselage station. A standard NACA airspeed-altitude
recorder was used to obtain a record of airspeed and altitude and an

NACA %u-second chronometric timer was used to correlate all records.

The tests consisted of a series of runs, each approximately 50 miles
in length, at different weights and speeds, in clear rough air. The
different weight conditions are due entirely to variations in fuel load.
The two weight conditions in these tests were for fuel loads corre-
sponding to wing-heavy and wing-light conditions (see fig. 3). Four
runs were made on each flight, two at a forward speed of approximately
250 miles per hour and two at approximately 180 miles per hour. The
measured accelerations, for a given level of turbulence, were expected
to be considerably lower than those in the previous investigation:

(ref. 1) primarily because of a higher wing loading of the airplane used
in these tests. In view of the lower accelerations expected, two flights
were made for each of the two weight conditions to obtain more accurate
results for the range of accelerations measured. The flight conditions
for the runs repcrted herein are given in table II.

EVALUATION OF DATA

The records obtalned and the evaluation of the data were very
similar to those in reference 1. As in reference 1, the method of ana-
lysis consisted primarily in comparing the accelerations measured by an
accelerometer near the center of gravity with the true airplane accel-
eration. The acceleration at the nodal point of the fundamental bending
mode, with the effects of the higher modes taken into account by fairing,
is assumed to be the true airplane acceleration.

Sections of the record in which the fundamental mode of vibration
predominated were analyzed to determine the actual nodal point of the
airplane wing in flight and to check on the validity of using the esti-
mated nodal point (station 278). It was noted from the records, as would
be expected, that the vibratory accelerations outboard of station 278
were 180° out of phase with those inboard of this station. The results
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of an evaluation of several sections of the records are shown in fig-
ure 5 for the two wing-weight conditions where simultaneous acceleration
measurements at various stations along the wing span have been normal-
ized for an average unit tip acceleration (average of left- and right-
tip accelerations). It is apparent from these results that for all
weight conditions tested the estimated nodal point (station 278) can be
considered the nodal point for the purpose of this paper.

Examination of the acceleration records for the nodal point (sta-
tion 278) revealed that, in addition to accelerations which were attri-
buted to gust and engine vibrations, vibratory accelerations of approxi-
mately 5 cycles per second were frequently present on both the single
and electrically combined traces. These vibratory accelerations were,
in general, approximately 180° out of phase on the left- and right-wing
nodal acceleration histories and thus indicated an antisymmetrical mode.
The same vibratory frequency was present on the electrically combined
nodal acceleration histories because of differences in amplitude of
vibration between the left and right wings. From inspection of the
twist records, the 5-cycle-per-second vibration appeared to be a low-
amplitude twist oscillation and, with few exceptions, was less than the
accuracy of measurement. Hence, this vibration was not considered
gsignificant in the analysis. The nodal-point acceleration traces were
therefore faired as illustrated in figure 6 when such vibrations were
present. Also shown in figure 6 is a time history of the center-of-
gravity acceleration trace with the corresponding faired nodal-point
trace superimposed for purposes of comparison.

If transient wing response were not present, acceleration measure-
ments at the center of gravity and at the nocdal points should be the
game. On the basis that transient-respguse effects were superimposed on
the airplane accelerations, the effects of transient wing response were
eliminated from the records by faliring and the results were used as a .
check on the accuracy of instrumentation and on techniques employed in
determining nodal-point accelerations. These results are shown in fig-
ure 7 where the electrically combined nodal-point acceleration measure-
ments are shown as a function of the separate nodal accelerations and
as a function of the center-of-gravity accelerations in which the effect
of all vibratory modes has been eliminated by faliring. The three tech-
niques are seen to be in good agreement. In checking nodal-point posi-
tion and methods of nodal acceleration measurement, samples of the
records from all accelercometers were used. However, only center-of-
gravity and electrically combined nodal acceleration measurements are
used for the remaining acceleration evaluation.

Records of center-of-gravity acceleration increments and corre-
sponding nodal acceleration increments were available for analysis from
four runs in each speed and weight condition. On each of the available
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runs, sufficient gust accelerations were evaluated to provide a descrip-
tion of the data. As an example, the data for one run are presented in
figure 8 in which the center-of-gravity acceleration increments are
plotted as a function of the nodal-point acceleration increments (elec-
trically combined). Since the trend of the data is roughly linear,
least-squares solutions for a straight line fitted to the test points
are used to describe the data and are presented in figure 8 as dashed
lines. The straight lines fitted to the data do not always pass through
the origin since the measured accelerations at the center of gravity
include effects of engine vibration and higher mode vibrations which
appear to be independent of the acceleration magnitude.

Examination of the records from the attitude recording instruments
indicated that the incremental wing twist at the two outboard stations
(stations 452 and 806) due to the gusts éxperienced in the test was less
than iO.lO, or approximately within the accuracy of the twist measure-
ments. The effect of wing twist, if present, is estimated to change the
aerodynamic load due to gusts by noc more than 3 percent. Since the
effect of wing twist on acceleration measurements is indicated to be
small and showed no consistent variation with load, it is not considered
further.

PRECISION

In the analysis of the flight acceleration records, both peak
(maximum indication including vibrations) and faired readings were made.
Consideration of the character of the records, repeatability of the
readings, and accuracy of the instrumentation leads to the belief that
errors are less than X0.05g for peak type of readings and less than
10.10g when fairing is employed in the evaluation. The accuracy of the
recording attitude gyroscopes used for wing twist measurements is esti-
mated to be within 10.10° for a single gust. -

RESULTS AND DISCUSSION

Descriptions of the available data were obtained by the least-
squares solution for a straight line Ancg =Ky + Ko Any o947, where

Angg is the acceleration increment at the center of gravity, K; is
the offset at the origin, K, is the amplification factor, and An,,351

is the acceleration increment at the nodal point. Although the data

from a single run are not believed to be sufficient to provide an ade-
quate description of dynamic-response effects (because of low maximum
acceleration values and few points at the high values on any one run),
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least-squares solutions and the corresponding standard errors for all
runs are given in table II to show the scatter of the data. Least-
squares solutions and standard errors for the positive and negative
accelerations treated separately and combined without regard to sign are
given in table II as well as the average weight, average altitude, and
acceleration-increment level for each run. (The acceleration-increment
level is given as the absolute average of the highest positive and nega-
tive acceleration increments experienced during the run.) Representative
data from each run in the same test condition were combined to obtained
the most reliable description of dynamic-response effects for each condi-
tion and the least-squares solutions and standard errors for these data
are given in table III.

The scatter of the amplification factor Kp for the individual-run

data shown in table II 1s rather large. The amplification factor for
the positive and negative acceleration data, combined without regard to
sign, is shown in figure 9 as a function of the acceleration-increment
level for each run. Although the data shown in figure 9 indicate that
the amplification factors are, in general, higher for the runs with the
larger acceleration values, insufficient data are available to establish
definite conclusions.

Data from all runs in the same test condition (from which the values
of table III were obtained) are plotted in figures 10(a) and 10(b) for
the wing-light and wing-heavy conditions, respectively. From the
descriptions of the data in table III it is evident that the values of
the offset K;, having an average value of about 0.0lg, are sufficiently

small to be neglected in the present investigation. Some differences
appear between the amplification factors for the various conditions
(table III and fig. 10), but in making comparisons of the data for speed
and weight effects, the only difference of any consequence appears
between the amplification factors for the 250- and the 180-mile-per-
hour data of the wing-light condition. Statistical analysis indicated
that this difference was greater than could be attributed to scatter of
the data. This difference, although not altogether borne out by the
wing-heavy condition, would indicate a small effect of speed, the higher
amplification factors being associated with the higher speed. No differ-
ences were found in the data that could be attributed to variations in
the test weight of the airplane. Within the accuracy of the data, an
average amplification factor of 1.28 with an average offset of 0.0lg
applies for all the test conditions. This description of the data is
shown by the dashed lines in figure 10 for purposes of comparison.

In addition to causing a difference between the fuselage accel-
erations and the nodal-point accelerations, transient response may cause
an appreciable change in the total aerodynamic load on the airplane. The
change in aerodynamic load due to wing response in the fundamental bending
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mode was calculated by use of strip theory on the basis of the mode
shape shown in figure 5 and the estimated fundamental wing frequencies
from the flight records (table I). The results of the calculations,
which neglected unsteady-1ift effects, indicate that the net change in
aerodynamic load due to this mode of vibration would result in airplane
accelerations of 10.02g or less when the vibratory fuselage acceleration
was 10.30g. Thus, the change in total aerodynamic load due to this mode
of vibration is relatively small.

The available data for runs at 250 miles per hour were analyzed on
the basis of the time (or distance) required to reach the maximum value
of acceleration for any gust, since current theory indicates that
transient-response effects vary with this parameter. The time from the
intersection of the acceleration trace with the lg reference to the
subsequent acceleration peak was utilized for this analysis, and, for
simplicity, is hereinafter referred to as "time-to-peak acceleration.”

. For transient-response calculations, some assumptions are made as to
the initial conditions on entry into a gust and as to the variation of
the gust velocity from start to peak. Repeated gusts, variations in
gust shape, and spanwise gust effects are present in the flight data
and may obscure any variation of transient response with time-to-peak
acceleration. However, in order to determine whether such a relation-
ship exists, the available data were sorted into three groups according
to time-to-peak acceleration. The medians of the groups were approxi-
mately 0.15 second, 0.40 second, and 0.75 second. About 40 percent of
the data were associated with the median time-to-peak acceleration of
0.40 second (approx. 12 chord lengths travel for a flight speed of

250 mph) with the remainder of the data divided equally between the
other two groups. Least-squares solutions were obtained for straight
lines fitted to the data, and the amplification factor Ko obtained by

this means is plotted in figure 11 as a function of the median value of
time-to-peak acceleration in each group for the wing-light and the wing-
heavy conditions. The results shown in figure 11 indicate that the
transient response effects are greater when the time-to-peak acceler-
ation is small.

In view of the differences between fuselage and nodal acceleration
measurements, methods of evaluating or obtaining acceleration measure- .
ments free of vibratory effects have been investigated. The results
used to check the instrumentation and techniques (fig. 7) indicate that,
as found in reference 1, the faired fuselage measurements are satis-
factory for estimating airplane acceleration. Where the vibratory accel-
erations can be distinguished from the accelerations due to gusts, this
method of fairing fuselage accelerations would seem to provide an ade-
quate measure of true airplane acceleration. This method would be appli-
cable for gust studies provided the aerodynamic and torsional effects of
wing flexibility were small. Inasmuch as fairing of the records may not
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always be feasible because of cramped or reduced time scales, the use of
combined nodal-point accelerometers has been proposed as a method of
measurement. An evaluation of this method was made and the results are
shown in figure 12. Peak readings from the electrically combined nodal
accelerometers are plotted as a function of the nodal-point accelerations
(true airplane acceleration) in which acceleration effects of higher
modes, when present, have been eliminated by fairing. It can be seen
that the acceleration difference (on the basis of the least-squares
solution which is shown as a dashed line) is about one-half of that when
peak fuselage measurements were used. Although some of the difference
noted may be due to response of the instrument to engine vibration, the
major part appeared to be due to secondary wing vibration.

CONCLUDING REMARKS

A flight investigation was undertaken on a four-engine bomber air-
plane to determine the effect of transient wing response in rough air
upon acceleration measurements at the center of gravity of the airplane.
For the airplane tested, the results showed that in rough air the
maximum or peak recorded acceleration increment at the center of gravity
was, on the average, equal to the true airplane acceleration increment
amplified by a factor of approximately 1.28 and further increased by a
constant value of approximately 0.0lg. (This compares with 1.20 and
0.05g as determined from the previous investigation on a two-engine
transport airplane.) There was an indication that the amplification
factor increased with magnitude of acceleration, but this relationship
could not be substantiated. Within the accuracy of determination, the
differences between fuselage and nodal accelerations were not affected
by variations in weight and only slightly affected by variations in
speed covered by the test conditions. This relationship is in sub-
stantial agreement with results obtained from the previous flight
investigation. )

The results of an analysis indicated that transient-response effects
on total aerodynamic load would be small for the test airplane. An ana-
lysis of the data on the basis of time-to-peak acceleration indicated
that the largest transient-response effects were associated with the
accelerations having the smallest time-to-peak values.

The results also indicated that the vibratory effects of wing
flexibility can be compensated for in time-history acceleration measure-
ments at the center of gravity by fairing the fundamental and higher
wing frequencies. Peak readings from an electrical combination of left-
and right-wing nodal acceleration measurements gave a better measure of
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~ the acceleration of the alrplane than peak center-of-gravity acceler-
ation measurements, although not so good as faired center-of-gravity
- measurements.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., April 21, 1952
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TABLE I

CHARACTERISTICS OF TEST AIRPLANE

Span, feet . . . . . e 1 =
Mean aerodynamic chord feet P 2
Wing area, square feet . . . . . . . . . . ¢ oo oo oo .. 1,739
Slope of 1lift curve, per radian . . . . . . ¢ + 4 ¢ ¢« « « « + « . 5.04
Aspect ratio . . . . . e O B I
Center-of-gravity p031t10n, percent M A, C e e e e e s (approx.)‘22
Fundamental frequency, wing bending (ground vibration tests, no

fuel condition), cycles per second . . . « . . . . . e « « « 3.3
Estimated fundamental wing frequency from flight records, wing-

heavy condition, cycles per second . . . . . . .« o . e ... 2.8
Estimated fundamental wing frequency from flight records, wing-

light condition, cycles per second « + « ¢« v « & « « & o &+ « &« » 3.0

“!ﬂ:’,”
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Figure 1.- Three-view drawing of test airplane.




NACA TN 2730

1k

‘UOTINQTILSTP S§S9UIITIS SsTMuBds pojBWILSE -°2 SInITq

*uy ‘uedstwes Supp

00/ 009 005 [0)4 e 0024 oo/ 0

T T T T T T 717 T T 717717690

. - €
2 ui-at ‘Iz




NACA TN 2780

/60 -
/20 -
80 |
40 -
T m
oY) EE N NN N NSNS N NN SR B B I .
0 100 200 300 400 500 &0 70 800

Distance from center line, in.

(a) Wing structure and nacelles.

g

al

5

= 80— Gross welght, 1b
Py 105,900

g ———— 100,920

Y —

ot

©

3

EO 940 |-

Cal

=3

ko] -

[

»

=

4 0 | I R WO N B
o -

B 0 100 200 300 400 500 600 0 800
A Distance from center line, in.

(b) Fuel load, wing-heavy condition.

80 Gross weight, 1b
32,130
T 88785

l [ [ | { ! | | | l | l [

200 300 400 500 600 700 800

Distance from center line, in.
(c) Fuel load, wing-light condition.

Figure 3.- Estimated spanwise wing feight distribution.

15




NACA TN 2780

16

("Surs 3ySta ur pajesadal aasm gOQ UOTLBYS
pu®e Q)2 UOT3B}S 3B SUOTFEBTTBISUT I933WOISTI00Y) -dueldare 3893 JO
SUTM 1JST UT SUOT}BOOT JISPJIOOSI-3PNFTI3E PUB I93SWOISTSIIY - “f 8INITH

_ ~ VIOVN™, N

Jgds 4834 o o
w v R o

sTX® 07458TH

Jeds 3uocdd 908
- ¢ uo3181S
] 24t 2
u0 19818 u073848
gle
UOT3IBAS ¢a¢
0 wmﬁ uoT18318
uo13838 Uo0I3BIS
(3sTM3) aopacooa opnilfiass VOVN '
09T 1897130876 ‘yoyN| V
5T T8073d0o *yOvN U
J8380a3 J0 GT] T80 }Jd3 0610 °‘uBY3B3S [®
sdo ‘ALouenbeay Tsangysy JI990U0I9Te008 Jo edi]




17

*SPI0DaI UYSTTI JI913WOIITS50B WoI 1urtod TBPOU JO UOTABOOT -°C =anITJ

*ur ‘uedsTwes

NACA TN 2780

37

004

Q09

aos

904

_

gLz uoigsig

SjuUoUSINEBOW § JO ©TBJIOAB
‘U0T3TPU 0D LARaU-SuTM O
sjusueansesw [T JO oFvIoA®
‘uo 13 Tpuod JuUITT-3um O

o)
F -
p— N.‘
O «
] N‘m
] V.W
W
— O/

8A 13804 UOT38ITIoS0 Jo epngirduy



18

Acceleration Increment, An, g units

10

—/0

10

— /0

NACA TN 2780

———— PFalred
Unfaired

\
I I I I I I I I | | I |
0 / 2 3 4 5 6
Time, sec
(a) Nodal points (electrically combined).
Center of gravity
| — ——— Falred nodal point
- s
/%.«f”m'\w\ M/‘\\\ N
\-’C\\ z e C’\/ i ,/‘/L‘
- \\
/) “‘u‘n’r’
| I | I I I I I | I | I
0 / 2 3 4 S5 6

Time, sec

(b) Center of gravity compared with faired nodal point.

Figure 6.- Time history of acceleration in gust.
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